Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23708, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38805151

RESUMO

Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).


Assuntos
Sistemas CRISPR-Cas , Cisticercose , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/sangue , Camundongos , Cisticercose/diagnóstico , Cisticercose/veterinária , Cisticercose/parasitologia , Equinococose/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Humanos
2.
Parasit Vectors ; 17(1): 163, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553755

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) is an important infectious disease caused by the metacestode larvae of Echinococcus multilocularis, seriously threatening global public health security. Kupffer cells (KCs) play important roles in liver inflammatory response. However, their role in hepatic alveolar echinococcosis has not yet been fully elucidated. METHODS: In this study, qRT-PCR was used to detect the expression level of miR-374b-5p in KCs. The target gene of miR-374b-5p was identified through luciferase reporter assays and loss of function and gains. Critical genes involved in NFκB signaling pathway were analyzed by qRT-PCR and western blot. RESULTS: This study reported that miR-374b-5p was significantly upregulated in KCs during E. multilocularis infection and further showed that miR-374b-5p was able to bind to the 3'-UTR of the C/EBP ß gene and suppressed its expression. The expression levels of NF-κBp65, p-NF-κBp65 and pro-inflammatory factors including iNOS, TNFα and IL6 were attenuated after overexpression of miR-374b-5p while enhanced after suppression of miR-374b-5p. However, the Arg1 expression level was promoted after overexpression of miR-374b-5p while suppressed after downregulation of miR-374b-5p. Additionally, increased protein levels of NF-κBp65 and p-NF-κBp65 were found in the C/EBP ß-overexpressed KCs. CONCLUSIONS: These results demonstrated that miR-374b-5p probably regulated the expression of inflammatory factors via C/EBP ß/NF-κB signaling. This finding is helpful to explore the mechanism of inflammation regulation during E. multilocularis infection.


Assuntos
Equinococose , MicroRNAs , NF-kappa B , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Células de Kupffer/metabolismo , Transdução de Sinais
3.
Front Immunol ; 14: 1201455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559722

RESUMO

Cysticercosis pisiformis, a highly prevalent parasitic disease worldwide, causes significant economic losses in the rabbit breeding industry. Previous investigations have identified a novel microRNA, designated as novel-miR1, within the serum of rabbit infected with Cysticercus pisiformis. In the present study, we found that C. pisiformis-derived novel-miR1 was released into the rabbit serum via exosomes. Through computational analysis using TargetScan, miRanda, and PITA, a total of 634 target genes of novel-miR1 were predicted. To elucidate the functional role of novel-miR1, a dual-luciferase reporter assay was utilized and demonstrated that novel-miR1 targets rabbit Toll-like receptor 2 (TLR2). Rabbit peripheral blood lymphocytes (PBLCs) were transfected with novel-miR1 mimic and mimic NC, and the in vitro experiments confirmed that novel-miR1 suppressed the expression of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 through the nuclear factor kappa B (NF-κB) pathway. In vivo experiments demonstrated that novel-miR1 was significantly upregulated during the 1-3 months following infection with C. pisiformis in rabbits. Notably, this upregulation coincided with a downregulation of TLR2, P65, pP65, TNF-α, IL-1ß, and IL-6 in PBLCs. Collectively, these results indicate that the novel-miR1 derived from C. pisiformis inhibited the rabbits' immune response by suppressing the NF-κB-mediated immune response. This immune modulation facilitates parasite invasion, survival, and establishment of a persistent infection.


Assuntos
Cysticercus , NF-kappa B , Animais , Coelhos , Cysticercus/metabolismo , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Imunidade
4.
Genes Dis ; 10(4): 1457-1469, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397560

RESUMO

microRNAs (miRNAs) are a class of non-coding functional small RNA composed of 21-23 nucleotides, having multiple associations with liver fibrosis. Fibrosis-associated miRNAs are roughly classified into pro-fibrosis or anti-fibrosis types. The former is capable of activating hepatic stellate cells (HSCs) by modulating pro-fibrotic signaling pathways, mainly including TGF-ß/SMAD, WNT/ß-catenin, and Hedgehog; the latter is responsible for maintenance of the quiescent phenotype of normal HSCs, phenotypic reversion of activated HSCs (aHSCs), inhibition of HSCs proliferation and suppression of the extracellular matrix-associated gene expression. Moreover, several miRNAs are involved in regulation of liver fibrosis via alternative mechanisms, such as interacting between hepatocytes and other liver cells via exosomes and increasing autophagy of aHSCs. Thus, understanding the role of these miRNAs may provide new avenues for the development of novel interventions against hepatic fibrosis.

5.
PLoS Negl Trop Dis ; 17(7): e0011520, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37490505

RESUMO

Liver fibrosis is one of the histopathological characters during Echinococcus multilocularis infection. The activation of hepatic stellate cells (HSCs) is a key event in the development of liver fibrosis. However, the molecular mechanism of HSC activation in the E. multilocularis infection-induced liver fibrosis remains largely unclear. Here, we reported that mmu-miR-342-3p was most dominantly expressed in HSCs and was upregulated in the HSCs in response to E. multilocularis infection. We further showed that mmu-miR-342-3p was able to bind to the 3' UTR of the Zbtb7a gene and regulated its expression. Moreover, mmu-miR-342-3p expression was negatively correlated with its target gene Zbtb7a in HSCs during E. multilocularis infection. Knockdown of mmu-miR-342-3p promoted the expression of Gfap in the activated HSCs in vitro. In the E. multilocularis-infected mice, knockdown of mmu-miR-342-3p suppressed the expression of α-Sma, Col1α1, and TGF-ß but promoted the expression of Gfap. Therefore, mmu-miR-342-3p is a key regulator for activation of HSCs, and inhibiting mmu-miR-342-3p to suppressed Zbtb7a-mediated TGF-ß signaling in activated HSCs could be a novel strategy to treat liver fibrosis induced by E. multilocularis.


Assuntos
Células Estreladas do Fígado , MicroRNAs , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA , MicroRNAs/genética , MicroRNAs/metabolismo , Cirrose Hepática/patologia , Fator de Crescimento Transformador beta/metabolismo , Proliferação de Células/genética
6.
Genomics ; 115(5): 110690, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488054

RESUMO

Infection of Taenia pisiformis cysticercus is very frequently found in lagomorphs and causes serious economic losses to rabbit breeding industry. T. pisiformis cysticercus has evolved numerous strategies to manipulate their hosts. The release of exosomes is of importance in the interaction between host and parasite. However, the mechanism by which T. pisiformis cysticercus evades the host immune system for long-term survival within the host remains unclear. Using small RNA sequencing and TMT labelling proteomic, we profiled the expression patterns of miRNAs and proteins in rabbit peritoneal macrophages treated with T. pisiformis cysticercus exosomes. Seven differentially expressed (DE)-miRNAs and six DE-proteins were randomly selected to validate the accuracy of the sequencing data by qRT-PCR or western blot. Functions of DE-miRNAs and proteins were analyzed using public data bases. And DE-miRNAs-DE-proteins correlation network were established. CCK-8 assay was used to evaluate the effect of exosomes on macrophages proliferation. Cell cycle of macrophages, isolated from T. pisiformis-infected rabbits, was determined using flow cytometry. A total of 21 miRNAs were significantly differentially expressed, including three worm-derived miRNAs. The expressions of miRNAs and proteins were consistent with the sequencing results. DE-miRNAs targets were related to cell proliferation and apoptosis. Exosomes treatment resulted in a decrease of macrophages proliferation. In vivo, T. pisiformis cysticercus significantly induced S phase cell arrest. Moreover, DE-proteins were related to production of interferon-gamma and interleukin-12, and immunoregulation. Correlation network analysis revealed a negative correlation relationship between DE-miRNAs and DE-proteins. Among them, novel334 and tpi-let-7-5p have potential regulatory effects on IL1ß and NFκB2 respectively, which imply that novel334-IL1ß/tpi-let-7-5p-NFκB2 axis may be an important way that T. pisiformis cysticercus modulates host immune response through exosomes. Further understanding of these potential regulatory mechanisms will contribute to clarify the mechanism of escape mediated by T. pisiformis exosomes.


Assuntos
Exossomos , MicroRNAs , Taenia , Animais , Coelhos , Cysticercus/genética , Taenia/genética , MicroRNAs/genética , Macrófagos Peritoneais , Exossomos/genética , Proteômica
7.
Exp Parasitol ; 242: 108403, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209934

RESUMO

The small ubiquitin-like modifier (SUMO) plays important roles, with the SUMOylation pathway as one of its core components. In the present work, a single SUMO gene was initially identified from Taenia pisiformis and designated as TpSUMO. Bioinformatic analysis showed that the TpSUMO gene contained a 309 bp open reading frame (ORF), encoding 102 amino acids, and had a predicted molecular weight of ∼12 kDa. The amino acid sequence of TpSUMO was deduced and it shared 44.00% identity with human SUMO2 (HsSUMO2) and exhibited more than 97.78% identity with SUMOs from Taenia and Echinococcus. TpSUMO possessed a putative non-consensus site (FK11MG) within its N-terminus and a typical di-glycine (GG) motif at the C-terminus. Basic local alignment search tool (BLAST) analysis showed that only a single SUMO-related ortholog was present in each set of known genome data for fourteen tapeworm species. The precursor His-TpSUMO-FL, mature His-TpSUMO-GG and mutant His-TpSUMO-GGK11R proteins (∼18 kDa) were expressed in Escherichia coli Rosseta (DE3), and rabbit polyclonal anti-TpSUMO was generated with a high titer of 1.28 × 105. In vitro SUMOylation assay results showed that TpSUMO multimer formation in the His-TpSUMO-GG reaction could be catalyzed by the human SAE1/SAE2 and UBC9 conjugation system, but K11R mutation disrupted TpSUMO chain synthesis. Quantitative real-time PCR (qRT-PCR) further revealed that TpSUMO was ubiquitously expressed in different stages of T. pisiformis and in higher levels during an early development phase (day 14) of adult worms. Immunofluorescence localization showed that TpSUMO was detected in the bladder wall of cysticerci, in the testis in immature segment, and within eggs in the gravid proglottids. These findings indicated that TpSUMO is a new member of the SUMO protein family and may play a vital role in regulation of functions within proteins involved in worm growth and development.


Assuntos
Taenia , Ubiquitina , Animais , Aminoácidos , Cysticercus/metabolismo , Glicina , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Taenia/genética , Taenia/metabolismo , Ubiquitina/genética , Ubiquitinas/química , Ubiquitinas/metabolismo
8.
Viruses ; 14(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35746759

RESUMO

China is the country with the largest number of domestic small ruminants in the world. Recently, the intensive and large-scale sheep/goat raising industry has developed rapidly, especially in nonpastoral regions. Frequent trading, allocation, and transportation result in the introduction and prevalence of new pathogens. Several new viral pathogens (peste des petits ruminants virus, caprine parainfluenza virus type 3, border disease virus, enzootic nasal tumor virus, caprine herpesvirus 1, enterovirus) have been circulating and identified in China, which has attracted extensive attention from both farmers and researchers. During the last decade, studies examining the etiology, epidemiology, pathogenesis, diagnostic methods, and vaccines for these emerging viruses have been conducted. In this review, we focus on the latest findings and research progress related to these newly identified viral pathogens in China, discuss the current situation and problems, and propose research directions and prevention strategies for different diseases in the future. Our aim is to provide comprehensive and valuable information for the prevention and control of these emerging viruses and highlight the importance of surveillance of emerging or re-emerging viruses.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Doenças dos Ovinos , Animais , China/epidemiologia , Cabras , Ovinos
9.
Front Cell Dev Biol ; 10: 798551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399512

RESUMO

The larvae of Echinococcus multilocularis causes alveolar echinococcosis, which poses a great threat to the public health. However, the molecular mechanisms underlying the host and parasite interactions are still unclear. Exploring the transcriptomic maps of mRNA, miRNA and lncRNA expressed in the liver in response to E. multilocularis infection will help us to understand its pathogenesis. Using liver perfusion, different cell populations including the hepatic cells, hepatic stellate cells and Kupffer cells were isolated from mice interperitoneally inoculated with protoscoleces. Their transcriptional profiles including lncRNAs, miRNAs and mRNAs were done by RNA-seq. Among these cell populations, the most differentially-expressed (DE) mRNA, lncRNAs and miRNAs were annotated and may involve in the pathological processes, mainly including metabolic disorders, immune responses and liver fibrosis. Following the integrative analysis of 38 differentially-expressed DEmiRNAs and 8 DElncRNAs, the lncRNA-mRNA-miRNA networks were constructed, including F63-miR-223-3p-Fbxw7/ZFP36/map1b, F63-miR-27-5p-Tdrd6/Dip2c/Wdfy4 and IFNgAS1-IFN-γ. These results unveil the presence of several potential lncRNA-mRNA-miRNA axes during E. multilocularis infection, and further exploring of these axes may contribute to better understanding of the pathogenic mechanisms.

10.
Front Vet Sci ; 9: 825307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400095

RESUMO

Caused by Echinococcus multilocularis (E. multilocularis), alveolar echinococcosis is reported every year around the world and severely threatens the safety of human beings and animals. However, the molecular interaction relationships between host and E. multilocularis still remains unclear. With multiple functions, circRNA plays a crucial role in regulating the development of a parasitic disease. With that in mind, the main purpose of this study was to reveal the circRNA expression profiles and circRNA-miRNA-mRNA network relationships in hepatocytes (HCs), hepatic stellate cells (HSCs), and Kupffer cells (KCs) of murine liver after E. multilocularis infection. After sequencing, 6,290 circRNAs were identified from 12 hepatic cell samples. Based on the subsequent analysis, 426 and 372 circRNAs were significantly different in HC expression at 2 and 3 months after E. multilocularis infection, and similar results were also demonstrated in HSCs (426 and 372 circRNAs) and KCs (429 and 331 circRNAs), respectively. Eight candidate circRNAs were randomly selected to identify the accuracy of the sequencing results by using qRT-PCR. Additionally, three circRNAs-miRNA-mRNA networks in HCs, HSCs, and KCs were constructed. Taken together, our study provided a systematic presentation of circRNAs in murine liver cells after E. multilocularis infection, and these networks are essential for research in circRNAs associated with E. multilocularis infection.

11.
Front Cell Infect Microbiol ; 11: 762472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858877

RESUMO

Cysticercosis is a neglected tropical disease caused by the larvae of Taenia solium in pigs and humans. The current diagnosis of porcine cysticercosis is difficult, and traditional pathological tests cannot meet the needs of detection. This study established a UPT-LF assay for the detection of Cysticercus cellulosae. UCP particles were bound to two antigens, TSOL18 and GP50; samples were captured, and the signal from the UCP particles was converted into a detectable signal for analysis using a biosensor. Compared to ELISA, UPT-LF has higher sensitivity and specificity, with a sensitivity of 93.59% and 97.44%, respectively, in the case of TSOL18 and GP50 antigens and a specificity of 100% for both. Given its rapidness, small volume, high sensitivity and specificity, and good stability and reproducibility, this method could be used in the diagnosis of cysticercosis.


Assuntos
Taenia solium , Animais , Cysticercus , Ensaio de Imunoadsorção Enzimática , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Tecnologia
12.
BMC Genomics ; 22(1): 884, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34872498

RESUMO

BACKGROUND: Bovine viral diarrhea virus (BVDV) is a major pathogen that causes bovine viral diarrhea/mucosal disease (BVD-MD), which has become a global infectious disease due to its wide spread and the lack of effective treatment. The process of BVDV infection is complex. Once infected, host immune cells are activated and modulated. As a major immune cell, peripheral blood lymphocyte cells (PBLCs) are the primary target of BVDV. In order to further understand the mechanism of BVDV- host interaction, the expression profiles of host lymphocytes mRNAs associated with BVDV infection were investigated by transcriptomic sequencing analysis. RESULTS: The transcriptomic sequencing analysis was performed on bovine PBLCs infected with CP BVDV-2 GS2018 after 12 h of infection. Gene expression profiling demonstrated that 1052 genes were differentially expressed in GS2018 infected PBLCs compared with the control group. Of these genes, 485 genes were up-regulated and 567 were down-regulated. The 19 differential expressed genes (DEGs) were selected for validation using quantitative real-time PCR and the results were consistent with the results of RNA-Seq. Gene ontology enrichment and KEGG pathway analysis showed that 1052 DEGs were significantly enriched in 16 pathways, including cytokine-cytokine receptor interaction, IL17, PI3K-Akt, MAPK and TNF signaling pathway. PPI network analysis showed that IL17A, IFN-γ and TNF-α interacted with various proteins and may play crucial roles in BVDV-2 infection. Of note, we confirmed that GS2018 induced Th17 cell differentiation in PBLCs and persistently increased the expression levels of IL17A. In turn, the replication of GS2018 was inhibited by IL17A. CONCLUSION: In this study, the transcription changes of DEGs related to host immune responses in bovine PBLCs were caused by CP BVDV-2 infection. In particular, the effector molecules IL17A of Th17 cells were significantly up-regulated, which inhibited viral replication. These results will contribute to exploration and further understanding of the host immune response mechanism and interaction between host and BVDV-2.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 2 , Vírus da Diarreia Viral Bovina , Diferenciação Celular , Fosfatidilinositol 3-Quinases , Células Th17
13.
Exp Parasitol ; 231: 108173, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34742714

RESUMO

Extracellular vesicles (EVs) from parasitic helminths play an important role in immunomodulation. However, EVs are little studied in the important parasite Fasciola gigantica. Here the ability of EVs from F. gigantica to induce cellular response to stress (reactive oxygen species generation, autophage and DNA damage response) in human intrahepatic biliary epithelial cells (HIBEC) was investigated. F. gigantica-derived EVs were isolated by ultracentrifugation, and identified with transmission electron microscopy, nanoparticle size analysis and parasite-derived EV markers. Internalization of EVs by HIBEC was determined by confocal immunofluorescence microscopy and flow cytometry. ROS levels in HIBEC were detected by molecular probing. EVs-induced autophagy and DNA-damaging effects were determined by evaluating expression levels of light chain 3B protein (LC3B), phosphor- H2A.X and phosphor-Chk1, respectively. Results revealed that EVs with sizes predominately ranging from 39 to 110 nm in diameter were abundant in adult F. gigantica and contained the parasite-derived marker proteins enolase and 14-3-3, and EVs were internalized by HIBEC. Further, uptake of EVs into HIBEC was associated with increased levels of reactive oxygen species, LC3Ⅱ, phosphor-H2A.X and phosphor-Chk1, suggesting EVs are likely to induce autophagy and DNA damage & repair processes. These results indicate F. gigantica EVs are associated with modulations of host cell responses and have a potential important role in the host-parasite interactions.


Assuntos
Vesículas Extracelulares/fisiologia , Fasciola/fisiologia , Imunomodulação/fisiologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Anti-Helmínticos/isolamento & purificação , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Autofagia/fisiologia , Western Blotting , Búfalos/parasitologia , Linhagem Celular , Vesículas Extracelulares/parasitologia , Fasciola/ultraestrutura , Citometria de Fluxo , Interações Hospedeiro-Parasita , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Fígado/parasitologia , Microscopia Confocal , Microscopia de Fluorescência , Coelhos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
14.
Genes (Basel) ; 12(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680985

RESUMO

Cysticercus pisiformis (C. pisiformis), the larval form of Taenia pisiformis, parasitize mainly the liver, omentum and mesentery of rabbits and cause huge economic losses in the rabbit breeding industry. MicroRNA (miRNA), a short non-coding RNA, is widely and stably distributed in the plasma and serum. Numerous data demonstrates that, after parasitic infection, miRNAs become the key regulatory factor for controlling host biological processes. However, the roles of serum miRNAs in C. pisiformis-infected rabbits have not been elucidated. In this study, we compared miRNA expression profiles between the C. pisiformis-infected and healthy rabbit serum using RNA-seq. A total of 192 miRNAs were differentially expressed (fold change ≥ 2 and p < 0.05), including 79 up- and 113 downregulated miRNAs. These data were verified by qRT-PCR (real time quantitative polymerase chain reaction) analysis. Additionally, GO analysis showed that the target genes of these dysregulated miRNAs were most enriched in cellular, single-organism and metabolic processes. KEGG pathway analysis showed that these miRNAs target genes were involved in PI3K-Akt, viral carcinogenesis and B cell receptor signaling pathways. Interestingly, after aligning clean reads to the T. pisiformis genome, four (miR-124-3p_3, miR-124-3p_4, miR-124a and novel-miR1) T. pisiformis-derived miRNAs were found. Of these, novel-miR1was upregulated in different periods after C. pisiformis infection, which was verified qRT-PCR, and pre- novel-miR-1 was amplified from the cysticerci by RT-PCR, implying novel-miR-1 was derived from C. pisiformis and has great potential for the diagnosis of Cysticercosis pisiformis infection. This is the first investigation of miRNA expression profile and function in the serum of rabbits infected by C. pisiformis, providing fundamental data for developing diagnostic targets for Cysticercosis pisiformis.


Assuntos
Cisticercose/sangue , Cysticercus/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Animais , Ontologia Genética , Coelhos
15.
J Parasitol ; 107(5): 799-809, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648630

RESUMO

Taenia solium cysts were collected from pig skeletal muscle and analyzed via a shotgun proteomic approach to identify known proteins in the cyst fluid and to explore host-parasite interactions. Cyst fluid was aseptically collected and analyzed with shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene alignment and annotation were performed using Blast2GO software followed by gene ontology analysis of the annotated proteins. The pathways were further analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), and a protein-protein interaction (PPI) network map was generated using STRING software. A total of 158 known proteins were identified, most of which were low-molecular-mass proteins. These proteins were mainly involved in cellular and metabolic processes, and their molecular functions were predominantly related to catalytic activity and binding functions. The pathway enrichment analysis revealed that the known proteins were mainly enriched in the PI3K-Akt and glycolysis/gluconeogenesis signaling pathways. The nodes in the PPI network mainly consisted of enzymes involved in sugar metabolism. The cyst fluid proteins screened in this study may play important roles in the interaction between the cysticerci and the host. The shotgun LC-MS/MS, gene ontology, KEGG, and PPI network map data will be used to identify and analyze the cyst fluid proteome of cysticerci, which will provide a basis for further exploration of the invasion and activities of T. solium.


Assuntos
Proteínas de Helminto/análise , Proteômica/métodos , Taenia solium/química , Animais , Cromatografia Líquida , Proteínas de Helminto/classificação , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Anotação de Sequência Molecular/métodos , Peso Molecular , Músculo Esquelético/parasitologia , Mapas de Interação de Proteínas , Alinhamento de Sequência , Transdução de Sinais , Suínos , Taenia solium/genética , Espectrometria de Massas em Tandem
16.
Commun Biol ; 4(1): 1004, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429506

RESUMO

Taenia hydatigena is a widespread gastrointestinal helminth that causes significant health problems in livestock industry. This parasite can survive in a remarkably wide range of intermediate hosts and affects the transmission dynamics of zoonotic parasites. T. hydatigena is therefore of particular interest to researchers interested in studying zoonotic diseases and the evolutionary strategies of parasites. Herein we report a high-quality draft genome for this tapeworm, characterized by some hallmarks (e.g., expanded genome size, wide integrations of viral-like sequences and extensive alternative splicing during development), and specialized adaptations related to its parasitic fitness (e.g., adaptive evolutions for teguments and lipid metabolism). Importantly, in contrast with the evolutionarily close trematodes, which achieve gene diversification associated with immunosuppression by gene family expansions, in T. hydatigena and other cestodes, this is accomplished by alternative splicing and gene loss. This indicates that these two classes have evolved different mechanisms for survival. In addition, molecular targets for diagnosis and intervention were identified to facilitate the development of control interventions. Overall, this work uncovers new strategies by which helminths evolved to interact with their hosts.


Assuntos
Evolução Biológica , Genoma Helmíntico , Taenia/genética , Animais , Evolução Molecular , Longevidade/genética , Taenia/fisiologia
17.
Hereditas ; 158(1): 28, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384501

RESUMO

BACKGROUND: The life cycle of Taenia solium is characterized by different stages of development, requiring various kinds of hosts that can appropriately harbor the eggs (proglottids), the oncospheres, the larvae and the adults. Similar to other metazoan pathogens, T. solium undergoes transcriptional and developmental regulation via epigenetics during its complex lifecycle and host interactions. RESULT: In the present study, we integrated whole-genome bisulfite sequencing and RNA-seq technologies to characterize the genome-wide DNA methylation and its effect on transcription of Cysticercus cellulosae of T. solium. We confirm that the T. solium genome in the cysticercus stage is epigenetically modified by DNA methylation in a pattern similar to that of other invertebrate genomes, i.e., sparsely or moderately methylated. We also observed an enrichment of non-CpG methylation in defined genetic elements of the T. solium genome. Furthermore, an integrative analysis of both the transcriptome and the DNA methylome indicated a strong correlation between these two datasets, suggesting that gene expression might be tightly regulated by DNA methylation. Importantly, our data suggested that DNA methylation might play an important role in repressing key parasitism-related genes, including genes encoding excretion-secretion proteins, thereby raising the possibility of targeting DNA methylation processes as a useful strategy in therapeutics of cysticercosis.


Assuntos
Metilação de DNA , Genoma Helmíntico , Taenia solium/genética , Animais , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , RNA-Seq , Sequenciamento Completo do Genoma
18.
Microorganisms ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209741

RESUMO

Cysticercus pisiformis, the larval stage of Taenia pisiformis, causes serious illness in rabbits that severely impacts the rabbit breeding industry. An inhibitive Th2 immune response can be induced by let-7-enriched exosomes derived from T. pisiformis cysticercus. However, the underlying molecular mechanisms are not completely understood. Here, we report that exosomal miR-let-7-5p released by T. pisiformis cysticercus played a critical role in the activation of M2 macrophages. We found that overexpression of let-7-5p in M1 macrophages decreased M1 phenotype expression while promoting polarization to the M2 phenotype, which is consistent with experimental data in exosome-treated macrophages alone. In contrast, knockdown of let-7-5p in exosome-like vesicles promoted M1 polarization and decreased M2 phenotype expression. Furthermore, down-regulation of transcription factor CCAAT/enhancer-binding protein (C/EBP)-δ resulted in the decrease of M1 phenotype markers and increase of M2 phenotype markers. These results suggested that let-7 enriched in exosome-like vesicles from T. pisiformis metacestodes can induce M2 macrophage polarization via targeting C/EBP δ, which may be involved in macrophage polarization induced by T. pisiformis metacestodes. The finding helps to expand our knowledge of the molecular mechanism of immunosuppression and Th2 immune response induced by metacestodes.

19.
Microorganisms ; 9(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34062985

RESUMO

Taenia asiatica is a zoonotic parasite found in the human intestine and pig liver that evolved various strategies to survive the host's defenses. Exosomes are membranous vesicles released by cells and are an important vehicle in parasite-host interactions. However, no literature exists on the specific infection mechanisms of T. asiatica against the host defense response, and further research is required to understand the parasite-host interaction. In this study, we investigated the host's differentially expressed genes (DEGs) while stimulating them with exosomes derived from the T. asiatica adult worm (Tas-exo) on LoVo by RNA-seq analysis. Our results identified 348 genes as being significantly differentially expressed for the Tas-exo group when comparing with that of the NC group. Some of these genes are related to modulation of cell proliferation and cell autophagy. Surprisingly, autophagy and cell proliferation have crucial roles in the defense against parasites; accordingly, we detected cell proliferation and autophagy in LoVo cells by CCK8, immunofluorescence, and Western blotting, demonstrating that Tas-exo could inhibit LoVo cell proliferation and autophagy via AMPK pathway. When P62 and p-mTOR/mTOR expression were significantly increased, BeclinI and pAMPK/AMPK were significantly decreased. These results expand our understanding of parasite-host interactions mediated by exosomes.

20.
Vet Sci ; 9(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35051088

RESUMO

Glycolysis is one of the important ways by which Echinococcus multilocularis acquires energy. Fructose-1, 6-bisphosphate aldolase (FBA) plays an important role in this process, but it is not fully characterized in E. multilocularis yet. The results of genome-wide analysis showed that the Echinococcus species contained four fba genes (FBA1-4), all of which had the domain of FBA I and multiple conserved active sites. EmFBA1 was mainly located in the germinal layer and the posterior of the protoscolex. The enzyme activity of EmFBA1 was 67.42 U/mg with Km and Vmax of 1.75 mM and 0.5 mmol/min, respectively. EmFBA1 was only susceptible to Fe3+ but not to the other four ions (Na+, Ca2+, K+, Mg2+), and its enzyme activity was remarkably lost in the presence of 0.5 mM Fe3+. The current study reveals the biochemical characters of EmFBA1 and is informative for further investigation of its role in the glycolysis in E. multilocularis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA